
Yin's	Mid-Term	Memory

New

Cisco	Systems	acquires	Chez	Scheme

Ikarus	Scheme bootstraps	itself	in	7	seconds

Larceny	-	another	fast	Scheme	implementation

Benchmarks	of	several	Scheme	implementations

Larceny	is	sometimes	faster	than	Chez	(sometimes	slower) I'm	not	sure	about	the	compilation	speed	though

Benchmarks	are	a	crock

Rise	of	Worse	is	Better	-	Richard	Gabriel

Unix	and	C	are	the	ultimate	computer	viruses

1.	the	worse-is-better	software	first	will	gain	acceptance

2.	second	will	condition	its	users	to	expect	less

3.	third	will	be	improved	to	a	point	that	is	almost	the	right	
thing

Richard	Gabriel	was	wrong

Unix	and	C	can't	really	be	"improved"

They	will	never	get	close	to	the	"right	thing"

http://xkcd.com/297/

Chinese	Puzzles

Ingenious	Rings	(Qiao	huan	巧环)

I	have	the	middle	on

CLR	v.s.	JVM

CLR	includes	instructions	for	creating	generic	types,	and	
then	for	applying	parametric	specializations	to	those	types.	
So,	at	runtime,	the	CLR	considers	a	List<int>	to	be	a	
completely	different	type	from	a	List<String>

List<int>	generates	completely	different	code	from	
List<double>

Can	use	type	inference	to	statically	resolve	types	if	possible

otherwise	a	conditional	needs	to	be	generated	for	union	
types

See	William	Clinger's	video

The	JVM	has	no	notion	of	which	classes	have	type-
arguments,	and	it's	unable	to	perform	parametric	
specializations	at	runtime

You	can't	overload	Java	methods	on	generic	types.	You	can't	
have	two	different	methods,	with	the	same	name,	differing	
only	on	whether	they	accept	a	List<String>	or	a	List<Date>.

Since	the	CLR	knows	about	parametric	types,	it	has	no	
problem	handling	methods	overloaded	on	generic	type	
specializations.

MSIL	instructions	are	polymorphic	(add	two	values)	and	the	
JIT	compiler	is	responsible	for	determining	the	types	of	the	
operands	and	creating	appropriate	machine	code

In	the	JVM,	every	unique	operation	(add	two	int	values,	add	
two	float	values,	etc)	has	its	own	unique	instruction.

The	CLR	has	closures	(implemented	as	C#	delegates).	The	
JVM	does	not.

C losures	and	generators	are	implemented	at	a	language	
level	and	are	simply	represented	as	classes	on	the	CLR	
level.

The	CLR	has	coroutines	(implemented	with	the	C#	'yield'	
keyword).	The	JVM	does	not.

The	CLR	allows	user	code	to	define	new	value	types	
(structs),	whereas	the	JVM	provides	a	fixed	collection	of	
value	types	(byte,	short,	int,	long,	float,	double,	char,	
boolean)	and	only	allows	users	to	define	new	reference-
types	(classes).

The	CLR	provides	support	for	declaring	and	manipulating	
pointers.

provides	a	"pinning"	mechanism	so	that	developers	can	
declare	a	block	of	code	within	which	the	CLR	is	not	allowed	
to	move	certain	pointers

CLR	provides	a	tail	call	instruction Is	there	really	a	need	for	a	"tail	call"	instruction?

about	R7RS	Scheme	draft
(may	apply	to	R6RS	etc	also)

Praise	for	define-record-type

much	simpler	than	R6RS

definitely	needs	something	like	that	in	the	"small"	language

Why	is	'cond'	"derived	form"	?

It	can	be	expressed	by	nested	if's

but	it	is	more	general	than	if

Why	is	'case'	derived	form?

case	=	switch	in	C

Can	be	implemented	in	a	more	efficient	way	than	nested	if's

Typed	Racket	comments

Union	types	are	nice

(define-type	Tree	(U	leaf	node))
(struct:	leaf	([val	:	Number]))
(struct:	node	([left	:	Tree]	[right	:	Tree]))

Should	Tree?	be	defined	after	the	union	type?

...	but	no	so	nice	if	you	can't	detect	errors	like	this:

(:	tree-sum	(Tree	->	Number))
(define	tree-sum	
		(lambda	(t)
			(cond	
				[(boolean?	t)	1]
				[(leaf?	t)
					(leaf-val	t)]
				[(node?	t)
					(+	(tree-sum	(node-left	t))
								(tree-sum	(node-right	t)))])))

passes	the	type	checker

...	or	if	the	error	message	doesn't	make	sense

(:	tree-sum	(Tree	->	Number))
(define	tree-sum	
		(lambda	(t)
			(cond	
				[(boolean?	t)
					(leaf-val	t)]
				[(node?	t)
					(+	(tree-sum	(node-left	t))
								(tree-sum	(node-right	t)))])))

>	Dropbox/prog/Y/racket-test.rkt:21:3:	Type	Checker:	
Expected	Number,	but	got	Void
		in:	(cond	((boolean?	t)	(leaf-val	t))	((node?	t)	(+	(tree-sum	
(node-left	t))	(tree-sum	(node-right	t)))))
		context...:
			/Applications/Racket/collects/typed-racket/typecheck/tc-
toplevel.rkt:295:0:	type-check
			success
			/Applications/Racket/collects/typed-racket/typed-
racket.rkt:40:4
			/Applications/Racket/collects/racket/private/misc.rkt:87:7

...	or	it	makes	sense	but	too	complicated

(:	tree-sum	(Tree	->	Number))
(define	tree-sum	
		(lambda	(t)
			(cond	
				[(leaf?	t)
					(leaf-val	t)]
				[(node?	t)
					(+	(tree-sum	(add1	t))
								(tree-sum	(node-right	t)))])))

>	Dropbox/prog/Y/racket-test.rkt:25:18:	Type	Checker:	No	
function	dom ains	m atched	in	function	application:
Types:	Zero	->	One
							One	->	Positive-Byte
							Byte	->	Positive-Index
							Index	->	Positive-Fixnum
							Negative-Fixnum 	->	Nonpositive-Fixnum
							Nonpositive-Fixnum 	->	Fixnum
							Nonnegative-Integer	->	Positive-Integer
							Negative-Integer	->	Nonpositive-Integer
							Integer	->	Integer
							Nonnegative-Exact-Rational	->	Positive-Exact-Rational
							Exact-Rational	->	Exact-Rational
							Nonnegative-Flonum 	->	Positive-Flonum
							Flonum 	->	Flonum
							Nonnegative-Single-Flonum 	->	Positive-Single-Flonum
							Single-Flonum 	->	Single-Flonum
							Nonnegative-Inexact-Real	->	Positive-Inexact-Real
							Inexact-Real	->	Inexact-Real
							Nonnegative-Real	->	Positive-Real
							Real	->	Real
							Float-Com plex	->	Float-Com plex
							Single-Flonum -Com plex	->	Single-Flonum -Com plex
							Inexact-Com plex	->	Inexact-Com plex
							Num ber	->	Num ber
Argum ents:	node
Expected	result:	Tree

		in:	(add1	t)

syntax	is	a	little	ugly	+	confusing

(define:	x	:	Number	7)
(define:	(id	[z	:	Number])	:	Number	z)

Not	enough	clue	about	which	is	type	which	is	value

a	better	way	may	be	(define:	(x	:	Number)	7)

or	just	infer	the	type	from	7

(let	([#{x	:	Number}	7])	(add1	x)) I	have	no	intention	of	letting	the	users	define	binding	forms

(ann	(+	7	1)	Number)

This	is	not	only	ugly.	This	is	ambiguous!

"application	of	ann	onto	the	value	of	(+	7	1)	and	the	variable	
Number"

type	inference

has	only	forward	type	inference

Is	unification-based	type	inference	still	usedful	sometimes?

intersection	types

(case-lambda:	
		[()	0]
		[([x	:	Number])	x])

(case-lambda	(->	Number)	(Number	->	Number))

may	cause	unnecessary	complexity

contains	parts	of	the	case-lambda	itself

as	it	contains	more	control-flow,	type	checking	becomes	
expensive

may	be	equivalent	to	interprocedural	analysis	in	the	end

parametric	polymorphism

Looks	better	than	ML

parts	that	may	be	improved

(:	list-length	(All	(A)	((Listof	A)	->	Integer)))
(define	(list-length	l)
		(if	(null?	l)
						0
						(add1	(list-length	(cdr	l)))))

variable-arity	functions

Should	not	have	variable	arity	functions

pass	lists	instead

known-length	list	type	constructor

(define-type	List-2-Ints	(List	Integer	Integer))

(define:	(sum2	(l	:	List-2-Ints)	:	Integer)
		(+	(car	l)	(car	(cdr	l))))

"can	use	car	and	cdr	without	checks"

Not	sure	this	is	good	idea

only	works	for	this	special	case	(lists)

ditto	my	var-arg	argument

real-world	C/C++	problems

the	evil	of	const	annotations

English	blog	article	on	how	to	deal	with	it

It's	easier	said	than	done

ignore	my	first	"rule"

just	PLEASE	DO	NOT	RETURN	CONST!!

ESSENCE

It's	a	manual	interprocedual	analysis	about	"purity"	of	
code

...	distributed	onto	ALL	C++	programmers	in	the	whole	
world

The	use	of	'const'	in	the	blog	is	easy	to	say	but	hard	to	do

not	everyone	abide	by	it

too	much	trouble

how	much	performance	gain	is	there?

The	best	way	is:	DO	NOT	USE	it

fixed	size	stack	of	C/C++	causing	too	much	complexity	in	
recursive	code

Some	codes	are	naturally	recursive can	recurse	into	arbitrary	depth

C/C++	has	fixed-size	stack will	stack	overflow	easily

some	code	must	maintain	their	own	"stack"	on	the	heap

This	is	like	manually	compile/CPS	code

You	can	never	do	as	well	as	the	compiler

This	is	also	why	your	prof	for	first	programming	class	tell	
you	how	to	convert	recursion	to	loops

because	of	this	C/C++	shit

C/C++	also	corrupted	processor	design

most	processors	are	targetting	C/C++'s	calling	conventions

functional	languages	usually	put	the	stack	on	the	same	
memory	segment	as	heap	and	not	to	use	the	processor's	
push/pop	instructions	or	calling	conventions

Thus	they	are	not	subject	to	this	restriction

Scala

using	the	function	name	itself	as	call	with	no	arguments

seems	to	be	"good	idea" in	fact	is	bad

if	we	must	write	f()	as	a	call we	can	treat	'f'	as	the	function	itself

if	we	can	write	'f'	as	a	call we	must	write	'f	_'	to	get	teh	function	itelf

This	is	ugly

forcing	call	to	be	'f()'	is	consistent	with	the	syntax	of	calls

being	able	to	write	'f'	as	the	function	value	is	consistent	with	
the	syntax	of	values

But	Scala	chose	the	wrong	direction

brace	syntax	for	lambdas

scala>	{	i:	Int	=>
		println("hello	world")
		i	*	2
}

{...}	should	mean	a	"block"

But	now	it	has	some	additional	meaning	
for	the	first	line	'i:Int	=>' This	is	not	consistent	with	the	meaning	of	{...}

scala>	i:	Int	=>	{
		println("hello	world")
		i	*	2
}

Unfortunately	Scala	didn't	choose	this	syntax	for	lambda

There	is	a	reason It	will	cause	confusion	and	ambiguity	when	lambdas	are	
used	in	other	pieces	of	code

The	best	way

(lambda	(i:Int)
		(begin
					(println	"hello	world")
					(*	i	2)))

Fun	Stuff

Map	of	the	Universe

Future	Timeline

Faster-Than-Light

Alcatraz related	films

Escape	from	Alcatraz	(1979)

Starring:	C lint	Eastwood

The	security	at	Alcatraz	is	fatally	flawed	in	
today's	standards	if	the	movie	were	true	story.

I	don't	believe	that	Morris	can	take	the	metal	
wedge	past	the	metal	detector	that	way.	In	
comparison,	the	airport	security	will	ask	you	to	
go	back	and	go	through	the	metal	detector	
again	if	the	metal	detector	alarms,	until	it	stops	
to	alarm.

I	don't	believe	anybody	can	get	electric	saws	
to	cut	the	bars	in	a	prison!

The	guy	must	be	at	least	10x	smarter	than	
what	is	shown	in	the	movie	to	escape.

Frank	Morris
Dummy	head	found	in	Morris'	cell

The	Rock	(1996)

Ideas Unit	Tests

Current	use	of	unit	tests	are	not	convenient tests	are	separated	from	code

new	way

specifications	should	be	inserted	at	actual	code	points

unit	tests	can	be	inserted	directly	into	the	code

unit	tests	should	be	able	to	be	folded	up	in	the	editor	so	that	
they	don't	show	up	when	the	programmer	doesn't	want	to	
see	them

Clojure	Notes

Recommended	Readings

"The	Development	of	Chez	Scheme"	by	R.	Kent	Dybvig

Dybvig	was	in	Dan	Friedman's	class

got	a	PhD	from	UNCwas	not	happy	at	UNC

most	of	the	techniques	mentioned	in	his	paper	has	been	
taught	by	him	in	his	compiler	class	P523

In	Praise	of	Idleness	(Bertrand	Russell)

text

spacepen	

Andrew	W	Appel.	Intensional	equality	;-)	for	continuations.	
ACM	SIGPLAN	Notices	31(2),	February	1996,	pages	55-57.

None	of	my	compilers	do	this	optimization	(interprocedual)

gcc	-O3

clang	-O3

Ikarus

larceny

Racket

But	they	can	optimize	away	the	call	when	'quickroot'	is	
defined	in	the	same	file

VIDEO:	William	Clinger:	Compiler	Optimization	for	
Symbolic	Languages	(1987)

William	Clinger,	author	of	Larceny

a	student	of	Carl	HewittCarl	Hewitt

MIT	professor

inventor	of	the	"actor	model"Scheme	was	influenced	by	actor	model

now	crazy	guy

putting	trademark	(TM)	signs	in	his	papers	and	concepts	that	
he	"invented"

horrendous	typesetting

crazier	a	few	months	ago...	recovered?

"all	good	logicians	will	eventually	go	crazy"

basic	points

union	typeslist	is	a	union	type

'()

cons

procedural	integrationmaybe	used	to	generate	machine	code	also?

(+	1	2)

inline	'add'	instruction

(add	1	2)

closure	optimization

tail-call	optimization

Guy	Steele"It	is	not	procedure	call	that	pushes	stack.	It	is	argument	
evaluation	that	pushes	stack"

Yin	Wang"The	essence	of	tail-call	  optimization	is	an	eta-reduction."

register	targetting

Dunning-Kruger	effect"Why	People	Fail	to	Recognize	Their	Own	Incompetence"

Computer	Science

Data	Structures

Operating	Systems

Programming	Languages	(basics)

Tools

TeXmacs

Unix	shell	tricks

Unix	shell	is	not	well	designedBut	some	clever	tricks	exist	when	you	really	need	to	use	it	in	
a	neat	way

Principles

Rule	1:	Try	NEVER	use	aliases

They	bring	TROUBLE!

Try	this

Try	this:	alias	if='crap'

...	and	then	reload	/etc/profilesource	/etc/profile

-bash:	/etc/profile:	line	3:	syntax	error	near	unexpected	
token	`then'
-bash:	/etc/profile:	line	3:	`if	[-x	/usr/libexec/path_helper	
];	then'

Rule	2:	Use	functions	whenever	possible

Trick	1:	change	PATH	in	a	rational	way

define	a	function

append-path	()
{
				PATH=$PATH:$1
}

...	and	use	it	to	change	the	PATH	variable

append-path	/home/ywang/bin
append-path	/usr/local/jdk1.6.0_38/bin
append-path	/usr/local/eclipse
append-path	/usr/local/racket/bin

audio

