L!'SP 15 OVER HALF A | | T WONDER IF THE CYCLES
CENTURY OLD AND 1T | | WILL CONTINUE FOREVER

STILL HAS THIS PERFECT | [~ —]

TIMELESS AIRABUTIT.

A FEW CODERS FROMEACH
EW GENERATION RE-
EISCO‘JERNG THE LISP PTZ*IS FOR A MORE... CIVILZED AGE-

Published in ArXiv: http://arxiv.orqg/abs/1008.2748

Tutorial for ActorScript™

extension of C#%, Java®, Objective C*, JavaScript®, and SystemVerilog

using

iAdaptive™ concurrency

for

antiCloud™ privacy and security

Carl Hewitt ©2013
http://carlhewitt.info

This paper is dedicated to Ole-Johan Dahl and Kristen Nygaard.

ActorScript™ is a general purpose programming language for implementing iAdaptive™
concurrency that manages resources and demand. It is differentiated from previous

languages by the following;
» Universality
o Ability to directly specify what Actors can do

This paper makes use of the following font coding to
increase readability of programs and documentation:'
o ActorScript expressions; executes,

and commandsy

grammar identifiers

program identifiers

variables (e.g., “balance iy

reserved words (e.g., “throw™’)

message names (e.g., “deposit™) and keyword

argument names,

ActorScript syntax is an extension of the syntax of Java,
C#,

Objective C, and SystemVerilog. Consequently,
ActorScript cannot conflict with the operators of these
languages including the following: +, &, ~, |, *, ?:,
* 1%, ==y =y 3, 4, Im, <<, K=y g, <,
&, !, ||, ->*, .*, %, »>»=, >>, ::,and-.

Unlike almost all previous programming languages,
because ActorScript uses bold font for reserved

names, new reserved words can be introduced into the
language without breaking existing programs.

Conditionals i.e., “... 7?7 (= .y i )’
testHE l‘\l'??ll? w(u
pati=pattern =" continue—Execute ",
pati—Pattesn =" continuei—execute”,”
“else”® patyspattern ="
elseContinue— execute",”
“catch” exception—pattern”—"
handlery= £xecute,”
exceptionj—pattern ="
handlerj— execute ”,"
“else” exception, pattern ="
elsehandler— execute )"

As an illustration, suppose that the procedure Random( )
returns a random positive integer.

Random( ) 72 (
@ Test the result of Random called with no arguments
0 = throw RandomNumberException,
@ if Random returned 0, throw an exception
m#—>Integer thatls ((> 0) and (< 9)) =

Recommended Readings

Computer Science

CLR v.s. JVM

Welcome to the World of Chinese Puzzles!

In china, traditional puzzles are called intelligence games and are valued as tools for training the mind in creative
and logical thinking. Some puzzles (like tangram) are Chinese in arigin, while others (like Huarong Pass) initially
came from outside of China but have been transformed in ways that are uniquely Chinese.

Chinese rings, tangrams, wire puzzles and
burr puzzles have been treasured by people
from all walks of life. Scholars have written
volumes exploring their intricacies.
Members of the royal family gave puzzles as
gifts and enjoyed playing with them on
holidays. Young women from well-to-do
families played with them to help pass the
time. And common people enjoyed puzzle
solving as an inexpensive form of
entertainment.

In the past, puzzles were highly crafted and
made of a wide variety of materials. And
many were decorated with auspicious
images for the puzzler to contemplate.

We invite you to explore this website, VIDEO: Two puzzie enthusiasts travel to Suzhou
read short histories of Chinese puzzles, and enter the fascinating world of Chinese puzzles
and view some of the beautiful antique

puzzles from the ¥i Zhi Tang collection.

CLR includes instructions for creating generic types, and
then for applying parametric specializations to those types.
So, at runtime, the CLR considers a List<int> to be a
completely different type from a List<String>

List<int> generates completely different code from
List<double>

Can use type inference to statically resolve types if possible

The JVM has no notion of which classes have type-
arguments, and it's unable to perform parametric
specializations at runtime

otherwise a conditional needs to be generated for union
types

@ See William Clinger's video

You can't overload Java methods on generic types. You can't
have two different methods, with the same name, differing
only on whether they accept a List<String> or a List<Date>.

Since the CLR knows about parametric types, it has no
problem handling methods overloaded on generic type
specializations.

about R7RS Scheme draft
(may apply to R6RS etc also)

MSIL instructions are polymorphic (add two values) and the
JIT compiler is responsible for determining the types of the
operands and creating appropriate machine code

In the JVM, every unique operation (add two int values, add
two float values, etc) has its own unique instruction.

The CLR has closures (implemented as C# delegates). The
JVM does not.

The CLR has coroutines (implemented with the C# 'yield'
keyword). The JVM does not.

. Closures and generators are implemented at a language
Q level and are simply represented as classes on the CLR
level.

The CLR allows user code to define new value types
(structs), whereas the JVM provides a fixed collection of
value types (byte, short, int, long, float, double, char,
boolean) and only allows users to define new reference-
types (classes).

The CLR provides support for declaring and manipulating
pointers.

provides a "pinning" mechanism so that developers can
declare a block of code within which the CLR is not allowed
to move certain pointers

CLR provides a tail call instruction Is there really a need for a "tail call" instruction?

much simpler than R6RS

Praise for define-record-type

definitely needs something like that in the "small" language

It can be expressed by nested if's

Why is 'cond' "derived form" ?

Yin's Mid-Term Memory

But some clever tricks exist when you really need to use itin
a neat way

Unix shell is not well designed

They bring TROUBLE!

Try this: alias if="crap

source /etc/profile ... and then reload /etc/profile ® Rule 1: Try NEVER use aliases

Try this

-bash: /etc/profile: line 3: syntax error near unexpected
token “then'

-bash: /etc/profile: line 3: "if [ -x /usr/libexec/path_helper
1; then'

o Rule 2: Use functions whenever possible

Principles

PATH=$PATH: $1 define a function

append-path () |
¢ |
b |

———

Q Trick 1: change PATH in a rational way

Q Unix shell tricks

append-path /home/ywang/bin
append-path /usr/local/jdk1.6.0_38/bin
append-path /usr/local/eclipse
append-path /usr/local/racket/bin

... and use it to change the PATH variable

Fun Stuff

L Clojure Notes

but it is more general than if

case = switch in C

Why is 'case' derived form?

Can be implemented in a more efficient way than nested if's

ESCAPE FROM
ALCATRAZ

s




